Electricity Answers

Current, Potential Difference, Resistor Networks, Resistance and Resistivity

1.	Resistance calculations		
	Evidence of 20 Ω for one arm (1)		
	$\frac{1}{R} = \frac{1}{20} + \frac{1}{20} (1)$		
	$R = 10 \ \Omega \ (1)$	3	
	Comment		
	This combination used instead of a single 10 Ω resistor [or same value as before] (1)		
	because a smaller current flows through each resistor/reduce heating in any one resistor/average out errors in individual resistors (1)	2	
			[5]
2.	Statement 1		
	Statement is false (1)		
	Wires in series have same current (1)		
	Use of $I = nAev$ with <i>n</i> and <i>e</i> constant (1)	3	
	[The latter two marks are independent]		
	Statement 2		
	Statement is true (1)		
	Resistors in parallel have same p.d. (1)		
	Use of Power = V^2/R leading to $R \uparrow$, power \downarrow (1)	3	
	OR as $R \uparrow$, $I \downarrow$ leading to a lower value of $VI = 3^{rd}$ mark consequent on second		
			[6]

3.	Charge calculation $Q = 20\ 000 \times 4.0 \times 10^{-4}$ s [substitution] Q = 8.0 C/A s Pagistance calculation	2	
	Resistance calculation $R = \frac{\rho l}{A}$		
	$= \frac{(1.7 \times 10^{-8} \Omega)(50m)}{(1.0 \times 10^{-3} m^2)}$		
	$R=8.5\times104~\Omega$		
	Formula (1)		
	Correct substitution (1) Answer (1)	3	
	$\frac{Potential difference calculation}{V = IR}$		
	= $(20\ 000\ A) \times (85 \times 10^{-5}\ \Omega)$ [or their value] (1) = 17 V [Allow full e.c.f] (1)	2	
	Explanation For the tree: R or p is larger (1)	1	
			[8]
4.	Diagram		
	Labelled wire and a supply (1)		
	Ammeter in series and voltmeter in parallel (1)		
	OR		
	Labelled wire with no supply (1)		
	Ohmmeter across wire (1)	2	
	Readings		
	Current and potential difference OR resistance (consistent with diagram) (1)		
	Length of wire (1)		
	Diameter of wire (1)	3	

Use of readings

5.

6.

R =	$V/I \text{ OR } \rho = RA/l (1)$		
Awa	reness that A is cross-sectional area (may be seen above and credited here) (1)		
Rep	etition of calculation OR graphical method (1)	3	
Prec	aution		
Any	two from:		
• R	Readings of diameter at various places /different orientations		
• 0	Contact errors		
• Z	Zeroing instruments		
• V	Vire straight when measuring length		
• V	Vire not heating up / temperature kept constant (1) (1)	2	
			[10]
(a)	Io and Jupiter: Time taken for electrons to reach Jupiter		
(<i>a</i>)	$t = s/v = (4.2 \times 10^8 \text{ m})/(2.9 \times 10^7 \text{ m s}^{-1}) = 14.48 \text{ s}$		
	$t = s/0 - (4.2 \times 10^{\circ} \text{ m})/(2.9 \times 10^{\circ} \text{ m s}^{\circ}) = 14.48 \text{ s}^{\circ}$ Correct substitution in $v = s/t$ (ignore powers of ten) (1)		
	Answer: 14.48 s, 14.5 s [no ue] (1)	2	
(b)	Estimate of number of electrons	2	
(0)	Q = ne = It		
	Q = he = h n = It/e		
	$n = (3.0 \times 10^6 \text{ A}) (1 \text{s}) / (1.6 \times 10^{-19} \text{ C})$		
	$u = (5.0 \times 10^{\circ} \text{ A})(15)/(1.0 \times 10^{\circ} \text{ C})$ Use of $ne = It$ (1)		
	$(1.8 - 2.0) \times 10^{25}$ (1)	2	
(c)	Current direction	2	
(0)	From Jupiter (to Io) / to Io / to the moon (1)	1	
		1	[5]
Cha	rge		
Cha	rge is the <u>current \times time</u> (1)	1	
Pote	ntial difference		
Wor	k done per unit charge [flowing] (1)	1	
Ener			
	× 20 C (1)		
= 18	0 J (1)	2	[4]
			[-1]

7. p.d. across 4 Ω resistor (a) 1.5 (A) \times 4 (Ω) = 6 V (**1**) (b) Resistance R₂ Current through $R_2 = 0.5 A$ (1) $R_2 = \frac{6(V)}{0.5(A)}$ $R_2 = 12 \Omega (1)$ [allow ecf their pd across 4 Ω] Resistance R₁ (c) p.d. across $R_1 = 12 - 6 - 4$ = 2 V (1)Current through $R_1 = 2 A (1)$ $R_1 = \frac{2(V)}{2(A)} = 1\Omega (1)$ [allow ecf of pd from (a) if less than 12 V] Alternative method Parallel combination = 3Ω (1) Circuit resistance = 12(V)/2 (A) = 6Ω (1) $R_1 = 6 - (3 + 2) = 1 \ \Omega \ (1)$ [allow ecf of pd from (a) and R from (b)]

[6]

1

2

8. Definition of symbols:

n = number of electrons/carriers per unit volume (per m³) OR electron (or carrier) density (1)

Ratio	Value	Explanation
$\frac{n_y}{n_x}$	1	Same material (1) (1)
$\frac{l_y}{l_x}$	1	Connected in series/Kirchoff's 1 st law/conservation of charge/current is the same (1) (1)
$\frac{v_y}{v_x}$	2	A is halved so ν double [Accept qualitative, e.g. $A \downarrow$ so $\nu \uparrow$, or good analogy] (1) (1)
F		6

v = average (OR drift) velocity (OR speed) (1)

[Accept e.g. ny = nx....]

[No e.c.f]

[NB Mark value first, without looking at explanation. If value correct, mark explanation. If value wrong, don't mark explanation *except*: if $v_y/v_x = \frac{1}{2}$ or 1:2, see if explanation is correct physics, and if so give (1). No e.c.f.]

9. Metal wire:

straight line through origin

Semiconductor diode: line along V axis for negative I curve up in first quadrant

in gap p.d. across it (4.5 –1.9) V $\therefore R_S = \frac{2.6V}{20 \times 10^{-3} \text{ A}} = 130\Omega$

10. <u>Resistance of strain gauge</u>

State
$$R = \frac{\rho l}{A}$$
 (1)
Use of formula (1)
x 6 (1)
 $R = 0.13 \Omega$ [ecf their l] (1)

[8]

[6]

3

3

4

2

$\left(R - \frac{\rho l}{\rho} - \frac{9.9 \times 10}{\rho} \right)$	$^{-8}\Omega m \times 2.4 \times 10^{-2} m \times 6$
$A = \frac{A}{A}$	$1.1 \times 10^{-7} \mathrm{m}^2$
$=129.6 \times 10^{-3} \Omega$	
$R = 0.13 \Omega$	
	J

Change in resistance

 $\Delta R = 0.13 \ \Omega \times 0.001$ $\Delta R = 1.3 \times 10^{-4} \ (\Omega) \ [\text{no e.c.f.}]$ OR $\Delta R = 0.02 \times 0.001$ $\Delta R = 2.0 \times 10^{-5} \ \Omega$

 $0.1\% \rightarrow 0.001$ (1) Correct number for ΔR (1)

Drift velocity

Stretching causes *R* to increase (1) Any two from:

- Current will decrease
- I = nA vQ
- Drift velocity v decreases
- *nAe* constant (1) (1)

[For *R* decreasing, max 1: Any one from:

- *I* will increase
- I = nA vQ
- v will increase
- *nAe* constant]

11. Definition of e.m.f. of a cell

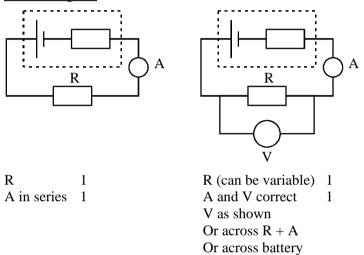
Work/energy (conversion) per unit charge	1
for the whole circuit / refer to total (energy)	1
OR	
Work/energy per unit charge converted from chemical to electrical (energy)	1 1

[9]

2

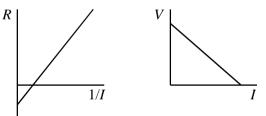
OR

$$E = \frac{W}{Q}$$
 for whole circuit 1
All symbols defined 1


OR

$$E = \frac{P}{I}$$
 for whole circuit 1

All symbols defined


[Terminal p.d. when no current drawn scores 1 mark only]

Circuit diagram

[2nd mark is consequent on R(fixed, variable) or lamp]

Sketch graph

Graph correctly drawn with axes appropriately labelled and consistent with circuit drawn

Intercept on R axes	Gradient \equiv (–) <i>r</i> [Gradient mark consequent
$\equiv (-)r$	on graph mark]

[Gradient may be indicated on graph]

(ii)
$$J = kg m^{2} s^{-2} (1)$$

 $C = A s \text{ or } W = J s^{1} (1)$
 $V = kg m^{2} A^{-1} s^{-3} (1)$
Converts 2 minutes to 120 seconds (1)

2

1 1

1

[6]

Multiplication of VI Δ t or V Δ Q (1) Energy = 1440 J (1) Example of answer: Energy = 6.0 V × 2.0 A × 120 s = 1440 J

Current in heating element

$$p = VI$$

$$P = \frac{V^2}{R}$$

$$I = \frac{500 \text{ W}}{230 \text{ V}}$$

$$I = 2.2 \text{ A}$$

$$P = \frac{V^2}{R}$$

$$R = \frac{230^2}{500} / 105.8(\Omega)$$

$$I = 2.2 \text{ A}$$

$$I = 2.2 \text{ A}$$

Drift velocity

13.

Drift velocity greater in the thinner wire / toaster filament	1
Explanation	
Quality of written communication	1
See $I = nAQv$	1
<i>I</i> is the same (at all points)	1
(probably) n (and Q) is the same in both wires	1

Current: 14. Conversion, i.e. $0.94 \times 10^{-3} \text{ m s}^{-1}$ (1) Use of 1.6×10^{-19} C (1) Answer 3.0 A $1.0 \times 10^{29} \ m^{-3} \times 0.20 \times 10^{-6} \ m^2 \times 1.6 \times 10^{-19} \ C \times 0.94 \times 10^{-3} \ mm \ s^{-1}$ (1) Current = 3.0 A [Accept 2.8 A if 0.9×10^{-3} used.] 3 Resistance: Recall $R = \frac{\rho l}{A}$ (1) Substitution: $\underline{1.7\times10^{-8}\,\Omega\,m\times4.0}~m$ R = ---(1) $0.20 \times 10^{-6} \text{ m}^2$ Resistance = 0.34Ω 3 (1) Potential difference: Potential difference = $3.0 \text{ A} \times 0.34 \Omega$ (1) = 1.0 V (1.02 V)[Mark for correct substitution of their values or for the answer of 1.0 V] 1 [8]

(Increasing res			sistance (1)	2
Leads to a sma	aller curre	ent (1)		2
$\frac{\text{Comparison:}}{\text{Drift velocity of }}$ [Allow V_1/V_2 =		(in second	wire) (1)	1
[Allow e.c.f. a	nswer co		h their current answer]	
[Resistivity up			(a) (and the table	
	ρ	up, I dow	$1/2 (2^{nd} mark)]$	[
				-
Calculation of	voltages	:		
Any use	e of			
Voltage		=	current x component resistance (1)	
Ballast		=	150 V (1)	
Filamen	ıt	=	25 V (1)	3
Voltages on di	agram:			
[Minimu	um 150 ÷	(1×25)]	ed on diagram near component; ignore on diagram) (1)	units (1)
Fundamental change necessary:				
(Free) charge carriers or free electrons, ionised, <i>particles</i> need to be charge				e charged (1) (1)
[NOT T	י^ ן			3
Calculation of	Calculation of power dissipated:			
V _{ballast}	=	230V –	10 V (1)	
Ι	=	120V/30	0 Ω	
	=	0.40 A (L)	
Power	=	230 V ×	0.40 A [e.c.f for current]	
	=	92 W (1		3
Faulty compor	nent:			
Starter is not breaking the circuit/starter still conducting (1)				

1	6
1	. U

Word Equation	Quantity Defined	
Voltage ÷ Current	Resistance	(1)
Voltage × Current	Power	(1)
Charge ÷ Time	Current	(1)
Work done ÷ Charge	Voltage/p.d./e.m.f	(1)

17. Demonstration that resistance is 0.085Ω :

$$R = \rho l/A (1)$$

= 1.7 ×10⁻⁸ Ωm ×20 m / (4.0 ×10⁻⁶ m²) (1) 2

Calculation of voltage drop:

=
$$37 \text{ A} \times 0.085 \Omega$$
 (1)
= $3.1 \text{ V} \times 2 = 6.3 \text{ V}$ [Not if V_{shower} then found] (1)

[Only one conductor, leading to 3.1 V, gets 1st mark] [Nothing if wires in parallel]

Explanation:

V

Lower resistance/
$$R = 0.057 \ \Omega/\text{less}$$
 voltage drop/new $V = \frac{2}{3} \text{ old } V(1)$

Power dissipated in cable/energy wasted/wire not so hot OR more p.d/current/power to shower OR system more efficient (1)

18. Proof:

$$V = V_1 + V_2$$
 $V = V_1 + V_2$ (1)

$$V = IR V_1 = IR_1 V_2 = \div I (1)$$

IR₂

Substitute **and** cancel *I* Sub using R =(1)

3

Explanation of why it is a good approximation:

Resistance of connecting lead is (very) small (1)

So $I \times R_{(very) small} = (very)$ small p.d./ e^{-1} s do little work so p.d. small/r small (1)

compared with rest of the circuit so p.d. small

[4]

2

2

2

[6]

	Circumstances where approximation mig	ght break down:				
	If current is large OR resistanc	(1)				
	[Not high voltage/long lead/thin l	ead/high resistivity lead/hot lead]	1			
	Calculation:					
	Use of $R = \frac{\rho l}{A}$ with A attempted	$l \times$ sectional area	(1)			
	Correct use of 16		(1)			
	Use of $V = IR$		(1)			
	0.036 V		(1)			
			4			
				[10]		
19.	Number of carriers or electrons per unit volume / per m ³ /carrier density/electron density (1) [Not charge density / concentration]					
	Drift velocity OR drift speed OR averag	2				
	[Not just velocity; not speed unless drift					
	m^{-3} (1)					
	$m^2 As m s^{-1} (1)$					
	Multiply and reduce to A (1)		3			
	[Base units not needed] [Mixed units and symbols could get the $[mA = m^{-1} loses 1 mark]$	third mark]				
	Metal:					
	M: <i>n</i> large so there is a current	n: n in metal <u>much</u> larger (1)				
	Insulator					
	I: <i>n</i> zero (negligible)/very small so less current (or zero current)	Current in metal is larger (1)	2			
	[Ignore anything about v. Allow e.g. e	electron density for <i>n</i>]		[7]		

20. <u>No</u>, because V is not proportional to I OR not straight line through origin / (1) only conducts above 0.5 V / resistance changes

Use of R = 0.74 / current from graph (1)

= 9.25 \$	$= 9.25 \Omega [9.0 - 9.5 \Omega]$ [Minimum 2 significant figures] (1)						
	Calculation of p.d. across <i>R</i> [8.26]	Calculation of total resistance[109 – 115]	Ratio <i>R</i> : ratio <i>V</i>	$E=\Sigma IR (1)$			
	÷I	– diode resistance [9]	Correct substitutions	Correct substitutions (1)			
	$103 \Omega [100 - 106] (1)$						
				3			

[Otherwise **0 0**]

21.	Use $R = \rho l/A$ OR correct rearrangement OR plot $R \rightarrow l$ gradient = ρ /A (1) [Symbols or words]	
	With $A = tw$ (1)	2
	$l = RA/\rho$ [Rearrangement mark symbols or numbers] (1)	
	Use of $A = tw$ (1)	
	[Correct physical quantities substituted but ignoring unit errors, powers of 10]	
	= 110 m	
	[111 m] (1)	3
	Reduce width/w of strip OR use thinner/t foil [Not reduce A; not increase T, V, I] (1)	
	Smaller $w/t/A$ will be less accurate OR have larger error OR larger <i>R</i> will be more accurate (1)	2
	[Increase <i>w</i> or <i>t</i> , could give e.c.f. to increased accuracy]	

[8]

[7]

22.	$I^2 R/(\varepsilon I - I^2 r)/\frac{(\varepsilon - Ir)^2}{R}$ (1)	
	$I^2 r/(\varepsilon I - I^2 r) \frac{(\varepsilon - Ir)^2}{R}$ (1)	
	$\varepsilon I OR I^2 R + I^2 r / \varepsilon^2 / (R + r) (1)$	
	$\mathcal{E}I = I^2 R + I^2 r OR (It = I^2 RT + I^2 rt / \text{their (iii)} = \text{their (i)} + \text{their (ii)} (1)$	
	Cancel I (OR I and t) and arrange [only if energy equation is correct] (1)	5
	Maximum current occurs when $R = 0$ (1)	
	$I_{\max} = \varepsilon/r$ (1)	2
	OR larger r means smaller I (1 mark)	
	1 M Ω [Could be underlined OR circled] (1)	
	It gives the smallest current (1)	
	[If 100 k Ω this reason: 1 only]	2

[9]